
1

Minimizing Query Execution Time of SPARQL Queries with

CS-index Approach

Khin Myat Kyu
1
, Kay Thi Yar

 2
, Aung Nway Oo

 3

University of Information Technology

Yangon, Myanmar
1khinmyatkyu@uit.edu.mm

2kaythiyar@ uit.edu.mm
3aungnwayoo@ uit.edu.mm

Abstract - RDF is a W3C’s standardized data model for

Semantic Web, and provides a graph-based descriptive way

for representing resources on the web and their relationships.

With the increasing use of RDF data, SPARQL query

processing over the data becomes a critical issue. This paper

proposes an indexing and searching approach that can

support both chain and star shaped SPARQL query. Our

approach considers graph structural nature of the RDF data.

The RDF data is firstly decomposed into chain and star

shaped subgraph patterns based on nature of edges for each

vertex. These subgraphs are stored as index, called CS-index.

When a SPARQL query is given, it is decomposed into query

subgraph patterns based on common join variable among all

triple patterns. And the query results are finally obtained by

matching these query subgraphs against with CS-index. The

proposed approach tends to minimize data loading/indexing

time, and query execution time by reducing number of join

operations needed to perform for a query’s processing.

Keywords - Semantic Web, RDF, SPARQL, graph-based

index, join optimization

I. INTRODUCTION

Resource Description Framework (RDF) is a schema-

free and graph-structured data model for describing

resources on the Web. Resources may be person, places,

organizations, or anything on the Web. These RDF data can

be accessed by SPARQL is a declarative query language

recommended by W3C. As the highly interconnected

nature of Web data, many RDF data management systems

have been proposed with different techniques [1], i.e.,

relation-based RDF store, the clustered property table,

vertical partitioning, and indexing.

Relation-based RDF stores such as Jena-SDB, Sesame,

RDF-3X, manage the data in relational tables and process

SPARQL queries using relational operators, such as scan

and join operators. The main problem of relation-based

RDF stores is that they need too many join operations for

processing SPARQL queries when the queries contain

many triple patterns. This kind of queries is called

complex queries.

To process complex SPARQL queries, many approaches

have been considered to solve this issue by emphasizing on:

(i) reducing number of join, (ii) reducing inputs of join

operators, and (iii) optimizing join order [3]. However, the

graph-structured nature of the RDF and the graph pattern

matching nature of SPARQL queries still have significant

challenges for efficient processing of complex SPARQL

queries over the interlinking RDF data. A question arises to

ask how to find efficiently all matches of a query graph in a

large database graph, i.e., reducing time of query

processing as much as possible.

In this paper, an indexing structure and querying

algorithm is proposed for processing chain and star shaped

SPARQL query. Blank nodes are not considered in this

paper as they represent a resource without specifying its

URI. Our proposed indexing structure collects

vertices/literals, and predicates for each vertex in the RDF

data graph based on their incoming and outgoing edges.

These combinations (vertices/literals and predicates) are

stored into an index table as key-value form to quickly

access the data. And we also propose a search algorithm

based on our indexing structure. The proposed method

could minimize query execution time, and requires little

memory usage as it stores all structural information of one

vertex with one key-value pair.

The remainder of the paper is organized as follows:

Section 2 describes literature review and explanation of

RDF data and SPARQL query is given in Section 3. Our

proposed indexing structure and search algorithm are

presented in Section 4. Section 5 explains the query

evaluation with proposed method. Finally, Section 6

concludes the whole paper and discusses future

perspectives.

II. RELATED WORK

Many triple stores, such as RDF-3X [4] and Hexastore

[5], store all RDF triples data (S,P,O) in a single three-

column table. For efficient data access, one-dimensional

indexes (B+ trees) are used for each of the six permutations

(i.e., SPO, SOP, PSO, POS, OSP, OPS), known as sextuple

indexing technique. However, this querying efficiency

comes at the cost of excessive storage requirements and

maintenance overhead since the complete data set is stored

replicated six times. It degrades the efficiency of query

processing as it requires expensive self-joins when

SPARQL queries consist multiple triple patterns [1].

X. Wang et. al [6] proposed a RDF storage and indexing

scheme, called CHex. CHex uses sextuple indexing and

binary association table (BAT) for a column-oriented

database system. It not only provides efficient single triple

pattern lookups, but also allows fast merge-joins for any

pair of two triple patterns. But the additional processing

becomes substantial as the queries become complex. And it

incurs space overhead in data storing.

 X. Lyu et. al [7] proposed the efficient subgraph

matching method for star queries. The method decomposes

both data graphs and query graphs into sets of star graphs,

and encode each star subgraph into a fingerprint.

Fingerprints were used to effectively reduce the data

searching space. But the method takes too much time in

fingerprints encoding, and can handle only star shaped

queries.

2

In [8], a graph indexing approach, Extended

Characteristic Sets, is proposed for SPARQL query

optimization. Extended Characteristic Sets the authors

considered is based on the work in [9]. It aims to accelerate

query processing time for conjunctive queries with multi-

chain-star patterns, called double chain-star queries. The

approach had advantages on queries’ processing time. But

it can process only double chain-star queries and has

processing overhead as it can extract extended

characteristic sets after generating characteristic sets. And it

cannot support data updates.

In [10], RP-filter was proposed for reducing the

redundant intermediate results of join operations. RP-filter

uses a path-based index which indexes the incoming path

information of RDF graph. However, it has limitation that

it could not exploit the graph structural information of RDF

data. The additional processing becomes substantial as the

queries become complex. In order to overcome this

limitation, RG-index was proposed in [11]. The RG-index

indexes the graph patterns by using adapted gSpan

algorithm - is a frequent subgraph mining algorithm was

originally proposed for graph transaction data set eg.

chemical compounds. But the method takes too much time

for mining discriminative and frequent graph patterns from

RDF data.

To overcome these limitations, we propose CS-index

which extracts chain and star shaped graph patterns by

counting the incoming and outgoing degrees of vertices

while parsing and dictionary encoding. We assume that

extraction of chain and star shaped patterns need the time

than RG-index because our proposed method does not use

subgraph mining technique. And the proposed method

could support both chain and star shaped SPARQL queries.

III. PRELIMINARY CONCEPTS

In this section, formal definition of RDF data and

SPARQL query are provided. Assume that there are three

pairwise disjoint sets: a set of uniform resource identifiers

(URIs) U, a set of literals L, and a set of variables VAR.

A. RDF Data

A RDF data set is a collection of statements in the form

of subject (s), predicate (p), and object (o). A statement t ϵ

U × U × (U υ L) (without variables) is called a triple. Table

1 presents an example of RDF data set, LUBM - is a

standard data set which was developed to evaluate the

performance of Semantic Web repositories. For simplicity,

we use prefix for each URI as many triples share the same

URI.

Prefix:

uni0 = “http://www.University0.edu#”

uni241= “http://www.University241.edu#

dept0= “http://www.Department0.University0.edu#”

rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”

owl= “http://swat.cse.lehigh.edu/onto/univ-bench.owl#”

TABLE I

EXAMPLE RDF DATA SET

Subject Predicate Object

uni0:University0 rdf:type owl:University

uni0:University0 owl:name "University0"

dep0:Department0 rdf:type owl:Department

dept0:Department0 owl:name "Department0"

dept0:Department0 owl:subOrgani

zationOf

uni0:University0

uni0:FullProfessor0 rdf:type owl:FullProfessor

uni0:FullProfessor0 owl:name "FullProfessor0"

uni0:FullProfessor0 owl:teacherOf uni0:GraduateCours

e0

uni0:FullProfessor0 owl:teacherOf uni0:GraduateCours

e1

uni0:FullProfessor0 owl:doctoralDe

greeFrom

uni241:University24

1

uni0:FullProfessor0 owl:worksFor dept0:Department0

uni0:FullProfessor0 owl:researchInt

erest

"Research20"

uni0:GraduateStudent1 owl:advisor uni0:FullProfessor0

These RDF data can be considered as directed, labelled

graph. Figure 1 shows the RDF data graph for example

RDF data set in Table. 1. In this paper, blank nodes are

omitted as they represent a resource without specifying its

URI.

University0 University

type

“University0"

name

Department0

“Department0"

name

Department

FullProfessor0

worksFor

type name

“Research20" FullProfessor

University241

University

type
research

Interest
subOrganiza-

tionOf
doctoralDegree

From

GraduateCourse0

type

“University241"

name

GraduateCourse1

teacher

Of

teacherO
f

Graduate

Student1

“FullProfessor0"

advisor

Fig. 1 RDF data graph

B. SPARQL Query

A SPARQL query consists of one or more triple patterns

(tps). A statement tp ϵ (U υ VAR) × U × (U υ L υ VAR)

(triple with variables) is called a triple pattern. Variable

symbols start with ‘‘?’’ to distinguish them from URIs and

literals. SPARQL queries can be classified based on the

shape of the query graph. In this paper, chain and star query

are considered. Chain queries include subject-object join

(the join is between a tp's subject and another tp’s object).

A star query includes subject-subject join, i.e. join variable

is at the subject’s position of all the tps.

Figure 2. shows example of SPARQL query. It retrieves

the university’s name where FullProfessor0 got doctoral

degree. It consists in the chain query type.

Fig. 2 Example SPARQL query

The query graph of the example SPARQL query in

Figure 2 is shown in Figure 3.

FullProfessor0 ?X University

doctoralDegree

From type

Fig. 3 Example SPARQL query graph

IV. PROPOSED METHOD

In our proposed method, there are two main phases: (i)

index construction and (ii) query searching. The proposed

indexing and searching algorithm are designed to process

SELECT ?X WHERE {

uni:FullProfessor0

owl:doctoralDegreeFrom ?X.

 ?X rdf:type “University” .

}

3

both chain and star query. Algorithms for the proposed

method are described in Fig. 5 and Fig. 6, respectively.

A. Index Construction

There are some tasks in CS-index construction phase:

parsing RDF triples, constructing dictionaries, and

extracting graph patterns based on the incoming and

outgoing degree of each vertex. All these tasks are carried

out in parallel. As first task, each RDF triple (vi,ei,vj) is

parsed into three parts: subject, predicate, and object.

Values of the subject/predicate/object are URIs or literals.

Thus, we store integer values instead of these URIs and

literals because they are complex and long string values.

Two dictionaries are needed for mapping the RDF triples

with integer values. The first one is for subjects and objects,

and the other one is for predicate, called subject/object

dictionary and predicate dictionary, respectively. Key-value

(id, value) mappings are used to construct the dictionaries.

The notation for ‘id’ is defined as Vid and Eid where Vid is

the integer value for subjects and objects, Eid is the integer

value for predicates.

(b)

 (a)

Fig. 4 (a) Subject/Object dictionary, (b) Predicate dictionary

While constructing the dictionaries, in-degree and out-

degree are computed for each subject and object. Degree

computation is not need to consider for predicate. If the

parsed one (vi) is subject, we increase the out-degree and

add the pair (ei,vj) into outgoing-edges of vi. If it is object,

we increase the in-degree and add the pair (vj,ei) into

incoming-edges of vi. If it is predicate, next triple is read to

parse.

Algorithm 1: CS-index construction algorithm

1. Input: RDF data set D

2. Output: CS-index, subject/object dictionary,

 predicate dictionary

3. begin

4. for each triple t in D

5. parse and encode each URI/literal

6. for each encoded URI/literal vi

7. if encoded URI/literal vi is subject

8. if out-degree of vi is zero

9. out-degree of vi ++

10. outgoing-edges of vi = {(ei, vj)}

11. end if

12. else

13. out-degree of vi ++

14. merge (ei,vj) to existing outgoing-edges of vi

15. end else

16. end if

17. else if encoded URI/literal vi is object

18. if in-degree of vi is zero

19. in-degree of vi ++

20. incoming-edges of vi = {(vj, ei)}

21. end if

22. else

23. in-degree of vi ++

24. merge (vj, ei) to existing incoming-edges of vi

25. end else

26. end else if

27. else break;

28. end for

29. end for

30. for each encoded subject/object vertex vi

31. store outgoing-edges and incoming-edges,

and vi

32. end for

33. end

Fig. 5 Algorithm for CS-index construction

After all RDF triples have been processed completely,

we store incoming-edges and outgoing-edges as compound

key and vi as value in CS-index. And then, CS-index is

sorted in ascending order based on the in-degree and out-

degree pair of each vi. CS-index of example RDF data in

Table I is shown in Table II.

TABLE II

CS-INDEX ARCHITECTURE

 outgoing-edges

(ei,vj)

incoming-edges

(vj, ei)

Vid

#1 - {(4,1)} 5

#2 - {(4,2)} 6

#3 - {(7,1)} 8

#4 - {(7,2)} 9

#5 - {(7,4)} 10

#6 - {(7,4)} 11

#7 - {(7,5)} 12

#8 - {(7,7)} 13

#9 - {(1,1)} 2

#10 {(1,2)} - 3

#11 {(8,7)} - 14

#12 {(1,2),(2,3)} {(4,3)} 1

#13 {(1,5),(2,6),(3,1)} {(7,6)} 4

#14 {(1,8),(2,9),(4,11),

(4,11),(5,12),(6,4),(7,13)}

{(14,8)} 7

B. Query Processing

When a query arrives, the query processor finds common

join variable which include as a variable in more than one

triple pattern. And the triple patterns are grouped based on

the common join variable. And each

subject/predicate/object values are encoded using two

dictionaries constructed in index construction stage. Then,

in-degree, out-degree, incoming-edges, and outgoing edges

are computed for each common join variable.

Algorithm 2: Query processing algorithm

1. Input: SPARQL query Q, CS-index

2. Output: result of the query resultQ

3. begin

4. find common join variable vari

5. decompose triple patterns tps based on vari

6. compute in-degree, out-degree, incoming-edges,

 outgoing-edges of vari

7. resultQ = match(in-degreevari, out-degreevari,

Vid URI/Literal

1 uni0:University0

2 owl:University

3 University0

4 dept0:Department0

5 owl:Department

6 Department0

7 uni0:FullProfessor0

8 owl:FullProfessor

9 FullProfessor0

10 uni0:GraduateCourse0

11 uni0:GraduateCourse1

12 uni241:University241

13 Research20

14 uni0:GraduateStudent1

Eid URI

1 rdf:type

2 owl:name

3 owl:subOrganizationOf

4 owl:teacherOf

5 owl:doctoralDegreeFro

m

6 owl:worksFor

7 owl:researchInterest

8 owl:advisor

4

 incoming-edgesvari, outgoing-edgesvari)

8. decode resultQ

9. return resultQ

10. end

match(in-degreevari, out-degreevari, incoming-edgesvari,

outgoing-edgesvari)

1. begin

2. access the CS-index based on the in-degree

 and out-degree of vari

3. retrieve the values which match with incoming-edges,

outgoing-edges

4. return resultvari

5. end

Fig. 6 Algorithm for query processing

When these four values are obtained, the results are

searched in CS-index. The location of CS-index where the

result can be exist are easily accessed as the CS-index is

sorted in ascending order according to the degree of

vertices. After the matched value (vertex id) is obtained, all

vertex id need to be decoded into the original strings by the

dictionary lookups. And the system displays the result to

user. In this way, the proposed method could optimize the

query response time by reducing number of join operations.

V. PERFORMANCE STUDY

A. Experimental Setup

We have conducted an experimental evaluation with

synthetic data set, LUBM [10], was used for performance

testing and all tests were run 10 times to calculate the

average results. The algorithm was implemented in Java

SDK 1.8 and all tests were performed on a PC with an Intel

Core i3 1.90 GHz processor, 4 GB RAM, and operating

system is Windows 8.1. The data nature of three different

LUBM data set is described in Table III.

TABLE III

DATA CHARACTERISTICS OF THREE LUBM DATA SET

Data Set #triples #class

instance

#property

instance

LUBM10 1,316,511 263,427 1,052,895

LUBM15 2,021,508 404,743 1,616,472

LUBM20 2,781,724 556,572 2,224,750

Test queries (Q1-Q5) were designed for SPARQL query

processing. Table IV lists all the benchmark queries. Q1

consists of only one triple pattern. Q2 is chain shaped query.

Q3 and Q4 are star shaped queries with two triple patterns

and seven triple patterns, respectively. The last Q5 is a

query which contains both subject-object join and object-

object join.

TABLE IV
SPARQL TEST QUERIES

ID Query

Q1 SELECT ?X WHERE {

?X rdf:type owl:University .

}

Q2 SELECT ?X WHERE {

uni:AssociateProfessor0 owl:worksFor ?X .

?X rdf:type owl:Department . }

Q3 SELECT ?X

WHERE { ?X rdf:type owl:GraduateStudent .

?X owl:takesCourse uni0:GraduateCourse20> .}

Q4 SELECT ?X WHERE {

 ?X rdf:type owl:AssociateProfessor .

?X owl:researchInterest "Research2" .

?X owl:teacherOf uni0:Course23 .

?X owl:teacherOf uni0:GraduateCourse23 .

?X owl:teacherOf owl:GraduateCourse24 .

?X owl:doctoralDegreeFrom uni290:University290 .

?X owl:worksFor uni0:University0 .

}

Q5 SELECT ?X WHERE {

?X rdf:type owl:Course .

uni0:FullProfessor2 owl:teacherOf ?X .

uni0:UndergraduateStudent118 owl:takesCourse ?X .

}

TABLE V

DATA LOADING/INDEXING TIME FOR THREE LUBM DATA SET

Data set Data Loading/Indexing Time

(sec)

LUBM10 11.72

LUBM15 20.34

LUBM20 30.24

Table V describes the time for data loading/indexing of

three different LUBM data set. It takes a few seconds to

load and index the input RDF data. We found that the

proposed method had slightly time difference although the

number of triples contained in the data set is significantly

varied.

Fig. 7 Query processing time of Q1, Q2, Q3, Q4, and Q5 over three

LBUM data set

Fig. 7 shows the time performance of five test queries in

three different data set. According to our experiment, our

proposed method can efficiently enhance the query run

time even if the number of triple patterns contained in a

given SPARQL query is large.

Fig. 8 Query processing time of Q3 and Q4 over three LUBM data set

0

0.1

0.2

0.3

0.4

0.5

Q1 Q2 Q3 Q4 Q5

Q
u

er
y
 P

ro
ce

ss
in

g
 T

im
e

(s
ec

)

SPARQL Queries

LUBM10

LUBM15

LUBM20

0

0.05

0.1

0.15

0.2

0.25

0.3

LUBM10 LUBM15 LUBM20

Q
u

er
y
 P

ro
ce

ss
in

g
 T

im
e

(s
ec

)

Q3 Q4

5

To obviously evaluate, we again compared only Q3 and

Q4. They are both star shaped query. But Q3 has two triple

patterns and Q4 has seven triple patterns. The difference

between number of triple patterns in Q3 and Q4 is three

times, but the processing time was not different too much.

The comparison result is shown in Fig. 8.

When we made an evaluation, it showed that our

proposed method can handle the queries with many triple

patterns as in processing the queries with less triple patterns.

The query processing time do not differ too much. So, we

conclude that our proposed method could process both

chain and star shaped SPARQL queries. Even when the star

shaped queries have many triple patterns, it can process

well.

VI. CONCLUSIONS

The proposed approach is designed to gain high-

performance query processing for chain and star shaped

SPARQL queries. Formally, when a query with n triple

patterns is processed, (n-1) join operations are needed to

execute to get the query’s result. It takes too much time for

query processing. So, our proposed CS-index and querying

approach intend to minimize query processing time by

avoiding join operations. The proposed method has index

construction time, but it requires only one unit cost to get

the result as explained in the query evaluation in Section V.

And it uses reasonable memory space as two dictionaries

(subject/object, predicate) and CS-index are needed to store

instead of original data set.

In future work, we will compare to validate that our

proposed method could efficiently minimize query

execution time than other state-of-art RDF indexing and

querying approach.

REFERENCES

[1] M.T. Ozsu, "A survey of RDF data management systems”,
Frontiers of Computer Science, Vol. 10, No. 3, June 2016, pp. 418-

432.

[2] T. Neumann and G. Weikum, “RDF-3X: a RISC-style engine for
RDF,” In Proc. VLDB, pp. 647–659, 2008.

[3] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple

indexing for semantic web data management,” In Proc. VLDB, pp.
1008–1019, 2008

[4] X. Wang, S. Wang, P. Du, and Z. Feng, "CHex: An Efficient RDF

Storage and Indexing Scheme for Column-Oriented Databases",
International Journal of Modern Education and Computer Science,

Vol. 3, No. 3, June 2011, p. 55.

[5] X. Lyu, X. Wang, Y.F. Li, Z. Feng, and J. Wang, “GraSS: An
efficient method for RDF subgraph matching”, In International

Conference on Web Information Systems Engineering, 1 Nov 2011,

pp. (108-122), Springer, Cham.
[6] Marios. et. al, “Extended Characteristic Sets: Graph Indexing for

SPARQL Query Optimization”, In Data Engineering (ICDE), 2017

IEEE 33rd International Conference on (pp. 497-508). IEEE.
[7] Neumann, T. and Moerkotte, G., 2011, April. Characteristic sets:

Accurate cardinality estimation for RDF queries with multiple joins.

In Data Engineering (ICDE), 2011 IEEE 27th International
Conference on (pp. 984-994). IEEE.

[8] K. Kim, B. Moon, and H.J.Kim, “RP-Filter: A path-based triple

filtering method for efficient SPARQL query processing”, In Joint
International Semantic Technology Conference, 4 Dec 2011, pp.

33-47

[9] K. Kim, B. Moon, and H. J. Kim, "RG-index: An RDF graph index
for efficient SPARQL query processing", Expert Systems with

Applications, Vol. 41, August 2014, pp. 4596 – 4607.

[10] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems”, Web Semantics: Science, Services and

Agents on the World Wide Web, Vol. 3, 31 Oct 2005, pp. 158-182.

[11] K. M. Kyu, K. T. Yar, A. N. Oo, “A Proposal of CS-index
Approach for SPARQL Queries Considering Chain and Star

Shaped Subgraphs”, The 10th International Conference on

Advances in Information Technology (IAIT2018), Vol. 10.

